Decoding an R C Circuit

This 19th article in the series of “Do It Yourself: Electronics”, decodes the working of an RC circuit.

<< Previous Article

In the previous article, Pugs understood the resistor and capacitor from a high level perspective and used some formulae to design various filters. Are you wondering, how did Pugs get those formulae? He computed them using the complex notation of the impedance of resistor R & capacitor C. Alongwith, he also used the “A * e^(j * φ)” notation for amplitute A and phase angle φ. Pugs detailed out his computations in a set of slides. Check them out below:

After the derivation of the formulae, slide 8 above shows their usage. It predicts the change in sine wave amplitude & phase angle at 2 different frequencies of 1KHz & 2KHz compared to the input, for various pairs of R & C values. And, then Pugs verifies them (within tolerance limits) by comparing the input and output waveforms, on the home-made PC oscilloscope, as created in his previous PC Oscilloscope article. Note that, while measuring, the GND is kept common for the two waveforms. Also, Pugs used the two stereo lines of the audio jack for the two waveforms, and configured xoscope accordingly.

Continuing from the previous formulae derivations, the final slide 9 shows the high-pass & low-pass filter computations and the calculation of the cut-off frequency, which has been used in the previous article.

Next Article >>

Anil Kumar Pugalia (123 Posts)

The author is a hobbyist in open source hardware and software, with a passion for mathematics, and philosopher in thoughts. A gold medallist from the Indian Institute of Science, Linux, mathematics and knowledge sharing are few of his passions. He experiments with Linux and embedded systems to share his learnings through his weekend workshops. Learn more about him and his experiments at https://sysplay.in.


   Send article as PDF   

2 thoughts on “Decoding an R C Circuit

  1. Pingback: Basic Filter Design | Playing with Systems

  2. Pingback: Square Wave using 555 | Playing with Systems

Leave a Reply

Your email address will not be published. Required fields are marked *